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LElTER TO THE EDITOR 

Height correlations in the Abelian sandpile model 
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I ara instiiuie oi  Fundamenmi Research, Hami Blabha h a d ,  Bombay 400005, india 

Received 21 January 1991 

Abstract. We study the distribution of heights in the self-organired critical state of the 
Abelian sandpile model an a d-dimensional hypercubic lattice. We calculate analytically 
the concentration of sites having minimum alluwed value in !he critical stafe. We a l ~ u  
calculate, in the critical state, the probability that the heights, at two sites Separated by a 
distance 7, would both have minimum values and show that the lowest-order r-dependent 
term in it varies as 1-l’ for large I. 

In recent years, the concept of self-organized criticality (soc) proposed by Bak et al 
[l ,  21 has attracted a lot of attention as a possible general framework for explanation 
of the occurrence of robust power laws in nature as it does not require fine tuning of 
any parameter to set criticality. Of the several models showing SOC, the sandpile model 
is simplest in structure and has been studied intensively ([3-91, and references therein). 

In an earlier paper, [IO] we have shown that the sandpile automaton model has 
an Abelian group structure which allows a simple characterization of its critical state. 
Most of the sandpile configurations are forbidden and do not appear in the critical 
state. All the allowed configurations that do appear in the soc state do so with equal 
probability. There is a recursive algorithm [IO] (which we call the burning algorithm) 
to determine whether a given configuration is allowed or forbidden in the SOC state. 
The total number of allowed configurations in the SOC state can also he computed 
exactly, and increases as p N  where N is the number of sites in the lattice and p is a 
lattice-dependent constant. Also the correlation function, measuring the expected 
number of topplings at site j due to a particle added at i, is known in the critical state 
[IO]. 

It is, however, desirable to have a more direct physical characterization of the SOC 

state. One of the quantities that may be used to characterize the soc state is the relative 
abundances of different heights in the SOC state. For a square lattice, these have been 
determined numerically by Manna [ l l ]  and Erzan and Sinha [12]. For a model with 
continuous heights these were studied earlier, also numerically, by Zhang [ 131. Further- 
more, there are correlations between heights of the pile at nearby sites in the critical 
state. For example, two adjacent sites cannot both have the minimum allowed height 
in the critical state. So far, these quantities have been calculated analytically only for 
the Bethe lattice [ 9 ] .  

In this letter, we present some results for the soc state of the Abelian sandpile 
model (ASM) on the usual d-dimensional hypercubic lattice. These results are not quite 
as complete as for the Bethe lattice. In particular we have been able to give analytical 
formula only for the probability of height at a given site taking its minimum allowed 
value (1 in our definition), but not for other heights. We show that on a large square 
lattice, the fractional number of sites having height 1 is P( 1) = (2/?r2) - (4/m3) ~ 0 . 0 7 3 6  
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and that the joint probability that two sites separated by distance r have heights 1 
each is P,,(r) = P2(1)(1 - 1/2r4+higher order terms). The treatment can easily be 
extended to othcr lattices and higher dimensions. In a d-dimensional hypercubic lattice 
(d 3 2), the connected part of the height-height correlation function varies as *-'d. 

Our technique can also be used to calculate the probabilities of some other subcon- 
figurations such as two adjacent sites having heights 1 and 2 respedively. 

Consider, for definiteness, the ASM on a finite square lattice of size L x L. The 
height zj at any site i takes values 1, 2, 3 or 4 in a stable configuration. Particles are 
added at randomly chosen sites and the addition of a particle increases the height at 
that site by 1. If this height exceeds the critical value 4, then the site topples, and on 
toppling its height decreases by 4 and the heights a! each of its neighbours increases 
by 1. The total number of particles (sandgrains) in the system is conserved on topplings 
at all sites other than the boundary sites. 

The burning algorithm to determine if a given configuration of heights occurs with 
non-zero probability in the soc state is defined as follows. We simply delete (burn) 
from a given configuration any site j whose height is strictly greater than the number 
of its unburnt neighbours (here by neighbours we mean sites connected to j by a bond). 
The process is repeated until no more sites can be burnt. If and only if this results in 
eventually all the sites of the lattice being burnt away, the configuration is allowed. If 
the burning procedure stops with a finite subset of sites remaining unburnt, the 
configuration is forbidden in the soc state. 

We consider a large L x  L square lattice. The number of allowed configurations 
N,.,,, on this lattice is given by 

N-, = det A (1) 

where A is the matrix specifying the toppling rules [lo]. In our problem, A is an 
(L2 x L') discrete Laplacian matrix with 

i f r = r  
A(r,r)= -1 if Ir- rI = 1 (2) 6 otherwise. 

Let us consider an allowed configuration C on the square lattice L where the site' 0 
has height z,= 1. Since two adjacent sites cannot both have height 1 in an allowed 
configuration, all the four neighbours N, E, S and W (see figure 1) of 0 can only have 

Figure I. An arbitrary site 0 and its four neighbours N, W, S and E on the square lattice 
L ( b )  The graph ofthe lattice L' obtained from L by deleting the bonds ON, OW and OS. 
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heights 2,3 or 4 in C. Then consider the configuration obtained by reducing the heights 
at N, S and W each by 1. Call this configuration C’. Now we consider an ASM defined 
on a lattice L‘ obtained from L by deleting three bonds ON, OS and OW so that in 
this new ASM, toppling at 0 does not add a particle at N, S or W. For each bond 
deleted, we also decrease the maximum height allowed at the two end sites of the 
bond by 1 (so that sand is still conserved at these end points in the new ASM). For 
this ASM, the toppling rule matrix A‘ is also L2x L2 and is given by 

(3) A(r, r) = A(r, r) + B(r, r) 

with B(r, r) = 0 except for the following elements 

B(N, N ) =  B(W, W) = B ( S ,  S )  = -1 

B(O,O)=-3 (4) 

B(O,N)=B(N,O)=B(S ,O)=B(O,S)=B(W,O)=B(O,W)=I .  

Since C is an allowed configuration on L, all its sites can be burnt under A in a burning 
procedure. Let the sequence in wlfich the burning proceeds be i,, i2, i,, . . . . Then it 
is easy to see that sites in C’ can be burnt under A‘ using the same sequence i ,  , i,, i, , . . . . 
Hence C’ is an allowed configuration under A’ iff C is an allowed configuration under 
A. Thus the number of configurations allowed under A with height zo= 1 is equal to 
the number of all allowed configurations under the toppling rules given by A‘. The 
latter, however, is equal to det A’. Hence we get 

det A’ 
det A 

P(l)=-- - det[ I + GB] 

where the matrix G = A-‘. The non-zero elements of B occur only in four rows and 
columns of B and thus one needs to calculate a 4 x 4  determinant, whose elements are 
given in terms of the matrix elements of G. The matrix G, by definition, satisfies the 
two-dimensional discrete Poisson equation 

1 G(r,r)A(r,r’)=a,,,,. (6) 
r’ 

For large L and with both r and r’ away from the boundary, this implies 

For r’deep inside the lattice, G(r, r.’) is independent of r’due to translational invariance 
of the lattice. However it depends on the value of L and diverges as (In L ) / 2 n  for 
large L. The integrals c$( r - r’) = G( r, r’) - G( r’, r‘) can be easily evaluated [ 141. We 
quote here a few values 

where e, and e, are unit vectors in the x and y directions respectively. Using the values 
of @(I) in (9, a straightforward calculation of the 4 x 4  determinant gives 

n 
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This is in good agreement with the numerical value P(1)=0.0736*0.003 found in 
[ll]. Using the same technique, P(1) can be evaluated in higher dimensions also. 

In a similar way, we can calculate the probability of occurrence of subconfigurations 
of the type shown in figure 2. They have the property that decreasing the height at 
any site by 1 makes them forbidden. Consider a particular subconfiguration S of this 
type with a given set of heights (for example, 1-2). Let { C }  be the set of all allowed 
configurations on the lattice L in which S occurs. Now we construct a graph L' in the 
following way. We start trying to delete the boundary bonds connecting the sites in S 
to the rest of the lattice L one by one. Deletion of each such bond is accompanied by 
the reduction of maximum height by 1 at both ends of the bond and the deletion is 
allowed iff the coordination number of any site in S does not become less than its 
specified height. This process stops when the coordination number of each boundary 
site in S becomes equal to its height specified in C on L. This results in only one of 
the bonds connecting the sites in S to the rest of the lattice remaining undeleted. 
Arguing as before, the set of all allowed configurations on the graph L'are in one-to-one 
correspondence with the set IC}.  Thus, in generd, the probability of occurrence of 
any such subconfiguration S is given by 

Prob(S)=det[l+ GB] (10) 

where the matrix B is S dependent and has only a finite number of non-zero rows and 
columns. 

For t'he subconfiguration S, shown in figure 2 ( a ) ,  E ,  is a 7x7 matrix. Then an 
explicit evaluation of the 7 x 7 determinant in (IO), using Mathematica [ 151 and the 
values of G from (7), gives 

9 9 47 48 32 
32 2 r  271 71 7r 

Prob(S,) = - - - + ~ - 7 + ~  = 0.010 341 1. 

A similar calculation for the subconfiguration S, (figure 2(b)) involves a l ox  10 matrix 
B, and we get 

81 525 1315 60076 503104 257024 
14 47r r2 97r3 277r4 +7 Rob( S,) = --+ - - - +- - - 

1785 856 524 288 
8171~ 81r' 

- +-~0.00141994. 

For the subconfiguration S, (figure 2(c)), the matrix B, is nine dimensional. Explicit 

1.21 I b l  I C 1  

Figure 2. Examples of subconfigurations of the type that become forbidden an decreasing 
the heisht by 1 at any site. 
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computation of the determinant gives 

23 389 2576 1280 3072 11264 16384 
hob(&)  = --+---+,-- 4 +T-T 

16 127r 9?r2 7r 7r 

=0.00134477. (13)  
For larger subconfigurations of this type, the evaluation of the determinants becomes 
very tedious. 

easy to see that 
f:....- "l l  ml ln .x ,nA cn-f. ".._ s+:n-o .&+I. - ,A --.-":- oll,.l.mA it I is i.,,m~cnA it i c  0,urr an, m.1"nL.U b"""~"Lmrru..r W L L U  do-.-, L C , , , ~ . , ,  m.,"nrU ., a0 .a ,,,u,b-o*u, L I  .I 

P(l)<P(2)< P(3)<P(4). 

A typical allowed configuration with zo= 2 could be either an allowed configuration 
even with zo = 1 or becomes disallowed with zo = 1 .  In the latter case, it is a configuration 
of the type shown in figure 2. Hence 

P(2) = P(l)+4 Prob(C,)+4 Prob(C,) + 8  Prob(CJ + . . . . (14) 

This is a series of positive terms and using the already calculated values of the first 
four terms we get 

P(2)>0.131438. (15) 

This should be compared to the numerical value P(2);30.174 obtained in [Ill.  The 
series in (14) seems to converge very slowly. 

We now calculate Pl,(r), i.e. the probability that two sites 0 and 0' (both deep 
inside the lattice) separated by distance r will both have height 1 in the SOC state. The 
neighbours (figure 3(a)) of 0 are N, E, S, W and those of 0' are N', E', S' and W' 
respectively. The allowed configurations on lattice L with heights 1 at 0 and 0 are 

bonds ON, OW, OS, ON' ,  O'W and 0's' deleted (figure 3(b)) and the maximum 
allowed heights at both end points of the deleted bonds being reduced by 1. Then 

ir? nr?e-!n-n"e cnrrespor?der?ce Wi!h the ??!!owed configurations ofl a !atthe 1' with the 

P,,(r) = det[ l+ GB, I ]  

N' 
io1 L' I bl 

Figure 3. ( a )  Figure showing sites 0 and 0' and their respective' neighbours on the square 
lattice L The distance between 0 and 0 is r. ( b )  The laaice L' obtained by deleting the 
bands ON, OW, OS, ON, O W  and O S  from figure 3(a). 
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where B , ,  , in this case, is an 8 x 8 matrix. This determinant simplifies to the determinant 
of a 6 x 6 matrix M of the form 

M = ( P  Q' P ') 
where P and Q are 3 X 3 matrices and Q' is the transpose of Q. Elements of P are 
independent of r and elements of Q tend to zero as r-2 for large r. Keeping only these 
lnnrl inn t ~ m o  ..,P nnt .'VU".E L I . l . . l l  "U e.,. 

where P(1) is given by (9). 
In higher dimensions also, one can express det[l+GB] in terms of the matrices 

r aiiu v. 111 U ULLILBIISIUIIS, B L B ~ I I B I ~ ~ S  vi v vary as r iur large r. ine iowesi-order 
r-dependent term in P,,(r) vanes as Q2(r) and hence as r-2d. In the case of the Bethe 
lattice, the effective dimension is infinite and the anticorrelation decays exponentially, 
in agreement with our earlier results [9]. 

n - _ d  n 1- I A: :._. .I . o n  .. . ~ - d  P . - I . - ~ ~  m~~ *~~~~~ 
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